A Polynomial-Time Algorithm for Optimizing over N-Fold 4-Block Decomposable Integer Programs

نویسندگان

  • Raymond Hemmecke
  • Matthias Köppe
  • Robert Weismantel
چکیده

In this paper we generalize N-fold integer programs and two-stage integer programs with N scenarios to N-fold 4-block decomposable integer programs. We show that for fixed blocks but variable N , these integer programs are polynomial-time solvable for any linear objective. Moreover, we present a polynomial-time computable optimality certificate for the case of fixed blocks, variable N and any convex separable objective function. We conclude with two sample applications, stochastic integer programs with second-order dominance constraints and stochastic integer multi-commodity flows, which (for fixed blocks) can be solved in polynomial time in the number of scenarios and commodities and in the binary encoding length of the input data. In the proof of our main theorem we combine several non-trivial constructions from the theory of Graver bases. We are confident that our approach paves the way for further extensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graver basis and proximity techniques for block-structured separable convex integer minimization problems

We consider N-fold 4-block decomposable integer programs, which simultaneously generalize N-fold integer programs and two-stage stochastic integer programs with N scenarios. In previous work [R. Hemmecke, M. Köppe, R. Weismantel, A polynomial-time algorithm for optimizing over N-fold 4block decomposable integer programs, Proc. IPCO 2010, Lecture Notes in Computer Science, vol. 6080, Springer, 2...

متن کامل

A Parameterized Strongly Polynomial Algorithm for Block Structured Integer Programs

The theory of n-fold integer programming has been recently emerging as an important tool in parameterized complexity. The input to an n-fold integer program (IP) consists of parameter A, dimension n, and numerical data of binary encoding length L. It was known for some time that such programs can be solved in polynomial time using O(ng(A)L) arithmetic operations where g is an exponential functi...

متن کامل

A degree bound on decomposable trees

A n-vertex graph is said to be decomposable if for any partition (λ1, . . . , λp) of the integer n, there exists a sequence (V1, . . . , Vp) of connected vertex-disjoint subgraphs with |Vi| = λi. In this paper, we focus on decomposable trees. We show that a decomposable tree has degree at most 4. Moreover, each degree-4 vertex of a decomposable tree is adjacent to a leaf. This leads to a polyno...

متن کامل

Huge Unimodular N-Fold Programs

Optimization over l ×m× n integer 3-way tables with given line-sums is NP-hard already for fixed l = 3, but is polynomial time solvable with both l,m fixed. In the huge version of the problem, the variable dimension n is encoded in binary, with t layer types. It was recently shown that the huge problem can be solved in polynomial time for fixed t, and the complexity of the problem for variable ...

متن کامل

Faster Algorithms for Integer Programs with Block Structure

We consider integer programming problems max{cx : Ax = b, l ≤ x ≤ u, x ∈ Z} where A has a (recursive) block-structure generalizing n-fold integer programs which recently received considerable attention in the literature. An n-fold IP is an integer program where A consists of n repetitions of submatrices A ∈ Z on the top horizontal part and n repetitions of a matrix B ∈ Z on the diagonal below t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010